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Dynamic scaling for avalanches in disordered systems
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Dynamic scaling for fracture or breakdown process in disordered systems is investigated in a two-
dimensional random field Ising modéRFIM). We find two evolving stages in the avalanche process in the
RFIM. At the short-time regime, a power-law growth of the avalanche A&és observed; and at late times,
the conventional nucleation and growth process is found. At the critical point of the RFIM, the avalanche size
is found to obey the dynamic scaling lats~t(4=#/*)'z_ From this dynamic scaling relation, the critical
strength of the random field. and the critical exponentg, v, andz, are determined. The observed dynamics
is explained by a simple nucleation theory of first-order phase transformations.
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[. INTRODUCTION understood. Certain structural and chemical heterogeneities
present in metallic glasses are suspected to be the cause of
Study of fracture or breakdown of disordered or heteroshear bandind4,13]. The phenomenology of the deforma-
geneous systems under external perturbation is of great irtion process suggests that it is a collective behavior of the
terest due to its direct relevance to many practical problembocal shear zones that lead to the shear banding or fracture:
[1-3]. It covers a wide range of fields from deformation andeither it is a result of coalescence and growth of many local
fracture in metallic glasseigt], Barkhausen jump in ferro- deformation avalanches or an abnormal runaway propagation
magnetd 5], martensite transformation in shape-memory al-of one of the deformed zones that leads to the percolating
loys [6], earthquake§7], and deformation of granular mate- phenomenon. One of the fundamental questions underpin-
rials [8] to the behavior of index or exchange rates in thening the deformation and fracture mechanisms is, therefore,
stock markef9]. The fracture or breakdown in these hetero-how these deformation zones initiate in the early stages, and
geneous systems occurs when the external control parametshat their dynamic behaviors are in later times.
approaches its threshold and is usually preceded by precur- The dynamic properties, such as initiation and propaga-
sors in the form of avalanch¢&0]. The underlying corpora- tion of the local events or avalanches, whether it is a local
tive behavior in the avalanches, such as the self-organizethagnetic domaiii5] or a local shear deformation zoht3],
criticality phenomenon, has been investigated extensively imre, therefore, of great importance to both theoretical under-
some of these systeri3,11]. However, most of the works to standing and practical applicatiofé—13|. Fracture and de-
date have concentrated on the equilibrium or static scalinformation process have been treated as phase transitions
behavior[10-13,16—19 very limited attention has been where the free energy difference between deformed or frac-
paid to how an avalanche develops. As a result, the dynamiwred and undeformed or perfect systems constitutes the driv-
nature of the avalanche or fracture remains unsettled. ing force for the transitio14—16. The scaling laws were
Fracture or breakdown is, by nature, a dynamic processhown in a mean-field model that treat the fracture or break-
The time-dependent behavior of the avalanches bears a sigown point as a spinodal point in first-order transit{dm].
nificant bearing on our understanding of deformation andHowever, depending on the specific models used, the scaling
fracture that depends sensitively on the external loading higs different for different model systems.
tory, as well as the intrinsic disorder embedded in the sys- Another unsettled issue about the analogy made between
tem. One of such cases that we are interested in, but far leslse phase transitions and fracture is that one of the salient
studied, is deformation and fracture in metallic glag<€es. features of the fracture or breakdown processesinstabil-
Deformation in metallic glasses occurs when the appliedty, may be overlooked. Certainly as the system is approach-
stress exceeds the yield or flow stress. Due to the lack dhg the breakdown point or fracture, it could be well de-
well-defined flow defects, such as dislocations, deformatiorscribed by the analogous models of phase transitions. But
in metallic glasses proceeds by the formation of localizecdbeyond the point of the yielding or breakdown, the system
zones with heavy concentration of plastic shearing insidenight be driven by the runaway process, or instability, char-
[13]. Different-sized shear zones occur during the deformaacterized byirreversibility. At and past this point, the char-
tion process and eventually evolve into a large, spanningcteristic time for the thermal fluctuations is shorter than that
shear band traversing the sample, resulting in fracture of thef the fracture process. Therefore, thermodynamic descrip-
material. Much like the Barkhausen jump in ferromagnetstion of the fracture or breakdown process in the form of
[5], the formation and propagation of the local shear zoneghase transitions may not be adequate, which includes both
lead to the serrated flow manifested in the stress-strain curvéhe thermally activated and disorder-induced fracture.
Each rise and fall in the curve corresponds to the propagation This dilemma motivates us to look for other model sys-
of a shear zone, or an avalanche, which of course dependsms that possess the two essential characteristics for a frac-
sensitivity on the resolution of the instruments. The exacture or breakdown proceskical interactions(not necessar-
origin of the formation of the shear band is still not well ily the free energy and instability. The interaction in the
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random field Ising model is the spin-spin coupling constanthe hysteresis loop D<D.; atD>D. only finite-size ava-
J; the heterogeneity or disorder is introduced by the randontanches are found. At the critical random-field strenfth
field h;. The fracture or breakdown process is described in=D_, there are avalanches of all sizes that satisfy statistical
the random field Ising modglRFIM) by the formation of distributions in the form of power laws.
avalanches: when the external applied field increases, the D. and corresponding critical exponents have been deter-
spins in the regions with strong disorder will flip first. The mined atH=0 by finding the exact ground states using a
flipped spins will further trigger their neighbors to flip as the maximum-flow, minimum-cut algorithm in graph thedry7|
local environments of théunflipped spins are changed due or by the equilibrium power-law scaling under a sweeping
to the presence of the flipped spins. Tkedmos} instabili-  field [18,19. However, the values db. in these studies are
tylike process is termedvalanche found to lie in a wide range from 0.54 to 0.75, and the
As is known, the RFIM indeed captures some of the escritical exponents are still not well obtained. It needs to be
sence of the fracture procelsi9], but its dynamic properties pointed out that the aforementioned results in two-
remain poorly understood. In addition, the scaling exponentsimensional RFIM are all obtained from the equilibrium cal-
are not easy to obtain, especially for those in two dimensionsulation and simulation. To our knowledge, there has been
(2D) [19]. Furthermore, the distinction between the early-no dynamic study of avalanches in the RFIM so far.
stage nucleation of the avalanches and the propagation or In this work we report that under an external field, the
growth at later times has not been clearly made and used inonequilibrium relaxation of metastable states shows a dy-
the equilibrium scaling analysis, although a spinodal instanamic scaling behavior at early times. From these results, we
bility is predicted for the fracture or breakdown po[d#].  are able to determineB®. and the critical exponents using
This work will therefore focus primarily on the dynamic be- dynamic scaling for the avalanche process in 2D. In addition,
havior of the avalanche process in the RFIM at zero temperapur results show that this method is more efficient than the
ture. Moreover, we expect to obtain, using the dynamic scalequilibrium techniques in obtaining the critical exponents.
ing, the equilibrium scaling exponents that are very difficult
to obtain directly from static scaling. _ B. Dynamic scaling
This paper is organized as follows. In the next section, we . ) . .
introduce the RFIM model used in this work and the proce- OUr prediction of dynamic scaling is based on the finite-
dure for dynamic scaling. In Sec. Ill, we describe the de-Sizé dynamic scaling hypothesiz0]. Near the critical point
tailed algorithms employed in this work and present the ma{Dc.Hc) in the phase diagraii21], the order parameter that
jor results obtained from the simulation. In Sec. IV, weiS defined to be the magnetization jummp(t)=[M(t)
discuss the results and present a simple theoretical explana-Mc«(Dc)1/2 satisfies the finite-size scaling relatiph9—
tion for the two-stage evolution in the dynamic process ob21l,
served in our work. Finally, we conclude this work by a brief

~1 —Blv 2
summary. m(L,t)~L™PPF(L/&(1), 2
where M (t)=((2S)/LY) is the total magnetizatior(,) de-
Il. DYNAMIC SCALING FOR AVALANCHE notes average over the random-field configuratidhgis the
IN THE MODEL SYSTEM value at critical point, angd/v measures the dimension of
A. The model m. L is the lattice size ang(t) is the nonequilibrium spa-

_ ) ) ~ tial correlation length of the flipped spins at timeF is the
In this work, we use a two-dimensional random-field scaling function. During the avalanche process in a finite-
Ising model to describe the development of avalanches iQj;e system, we can define the starting titmed when the
disordered systems under an external field. The Hamiltoniapygest avalanche starts and the total number of flipped spins

of this system can be written as equalss(L,t) during time regim&0, t]. At the beginning of
evolution,&(t) is small compared with. Therefore, the ava-
A=-JY SS-> hS-HX S, (1)  lanche sizes(L,t)~L%m(L,t). Together with Eq.(2) we
ap) i i have

whereS;=*+1 are spin variables andj) denotes the sum- s(L,t)~L%m

mation extending over all nearest-neighbor spihss the

spin-spin coupling constanH is a homogeneous external ~L9AE[(He—H)L?" (D~ Dg)LY";tL 7],

applied magnetic fieldh; is an uncorrelated random field (3)

that represents the internal disorder and is chosen from a

Gaussian distribution{h;)=0 and (h(x)h(x"))=2Dé&(x  where /v measures the dimension Bf zis the dynamic

—x"). BothH andD are in units ofJ(>0). critical exponent and is defined by the dynamic scaling hy-
Since the avalanche process is in general much faster thgsbthesisr= £%f (k&), wherer is the relaxation time of meta-

thermal fluctuation, we focus on the systemTat0. It has  stable state, anki~27/L is the wave vector of the system.

been found in this case that Bt=0, the system exhibits a Near the critical point, this relation gives us the finite-size

continuous phase transition &, below which there is a scaling for the duration time of avalancf?].

ferromagnetic order statgl7]. When a sweeping external

field is applied[18,19], there exists an infinite avalanche in (to)~ L% (4a)
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At the critical point, we have from Ed3) (to) has different values ned., but the dynamic scaling
[d=giv]z_ +0 relations[Eqgs.(4)] do not change. We give the results{t)
(s(t))~t ~t (4b) here that is defined as the avalanche process whose duration

This scaling relation is valid at least at the short-time regimef[Ime to is the longest during a magnet|;at|on reversal pro-
If we take the logarithm on both sides of H8), the deriva-  CcSS- We also measure the avalanche size as the numbers of

tive with respect ta =(D,—D)/D. gives flipped spins. The same dynamic scaling is found rizar

dIn{s(t)) (12 4o B. Results
[ ~ v C
ar r=0 Figure Xa) is the evolution of avalanches Ht,(L) in the
- . short-time regime at different values of the random-field
at the critical point =0 andH=H.. strength under an infinitely slow driving field. In a finite-size

Scaling relation(4b) shows that atR¢,H), the ava-  gystem, the critical random-field strengfh(L) is defined
lanche size increases with a power law in time. Equatidihs such that the avalanche tinfe,) has a maximum ab (L)
enable us to find the critical value &f, and critic_al expo- [Fig. 1c)]. It shows that atD (L), m(t) fits well to the
nentsg, v, andz by measur_e.men.ts of the dynamic behaV'Orpower law in time, as predictefj by’ E@tb). This gives us an
of avalanches along the critical liféD, He)} [21. efficient way to locat® (L) by comparing the derivation of

them(t) curves with that of the power-law fits, as shown in
lll. SHORT-TIME DYNAMIC SCALING Fig. 1(c). Figure Xb) shows the effect of driving ratAH.
FOR AVALANCHES Although 6 decreases with increasingH, it can be seen
A. Algorithms from Fig. 1(c) that the value ofD.(L) determined is not

We use synchronous dynamics to investigate the kinetic&ecteéd byAH. BothD¢(L) and ¢ are listed in Table I.

of avalanche where all spinéS! are updated simulta-  Figure 2 is the log-log plot of Eq(4c) under infinitely
neously. First the local fieldf;} is calculatedf;=3S;+h; slow driving.(to) is fitted to Eq.(4a), as shown in the inset.
+H; then the following rules of renewal are applied to each’ "€ exponents, v, andz can be determined by fitting to
spin: (i) If f,=0, the spin-flip probability ofS is 0.5; (ii) Egs. (4) in a finite-size system, and are extrapolated_to
otherwise,S = sgnf,). —oo, Table | lists the results from fitting and vz at L
One time step in the simulation is defined as one attempt 512, 1024, and 2048.
of all the spin updates. The initial configuration of the system The critical random-field strengtB (=) in an infinite
is a ferromagnetic state &=0 with all spins up ¥=1).  RFIM can be calculated by the finite-size scaling relation,
The system is then allowed to evolve under a varying exter- 1
nal field described by the following procedurés.The time De(L)=Delee)~L 7" ®)
is set to zero (=0), then the external field is decreased by
AH and is kept constantji) at timet, synchronous dynam-
ics is applied and the avalanche si¢) is calculated using The resultisD ()= 0.65=0.03 as shown in Fig.(B). Once
the relations(t)=L2[M(0)— M(t)]/2; (iii) Step (i) is re- we have determined.(>~), we are able to confirm the
peated until timet, when the metastable state is achieved finite-size scaling relatio3). Figure 3 shows ab (), the
i.e., none of the spins flip at time stép(t, is defined as the scaling ofm(t) between a pair of lattices. The exponefits
duration time. andz can be calculated and averaged to compare with those
Proceduresi), (i), and(iii) are carried out until the mag- determined by Eqs4a—(4c). Table | lists all the results.
netization saturates @1 = —1. In a finite-size system the The exponents anB. determined from dynamic scaling
critical field H¢(L) is defined as the value at which the total of the avalanche agree with those calculated from ground
avalanches(to) is the largest or the duration tintg is the  state finding in 2D RFIM without magnetic field7] and
longest. Therefore, the avalanche evolution is recognized asther method$18,19. It is found that finite-size scaling has
s(t) atH(L). significant effect on the avalanche in RFIM9]. In this
In this work, we used two methods to change the fieldwork, however, we did not find the strong finite-size effect
The first is to fix AH at a constant value throughout the on the dynamic scaling behavior of the avalanche process at
field-sweeping process. The external field is varied as a steghort time. This can be easily understood by the fact that our
function and the driving rate can be measuredMly. The  dynamic scaling is at the short-time regime of avalanche
second approach is to adjusH to let it be the local field of  evolution. At this stage, the avalanche is still small compared
the most unstable spin. This corresponds to infinitely slowwith the system size.
driving or quasistatic driving. In this case, only one spin is One of the consequences of the early stage dynamics is
flipped at the beginning of each avalanche. Therefore, theéhat the exponents calculated from E@4). have less statis-
evolution of the system is deterministic: For a configurationtical error than those in equilibrium simulation studies. This
{h;}, the evolution of avalanches is reproducible. suggests to us that in low dimensions, this method may serve
s(t) is averaged over 100-5000 random-field configura-as a very efficient and reliable alternative to study the critical
tions, depending on the system siz¢.(L) defined from phenomena in RFIM. In Table Il we compare the exponents
largest avalanche sizés(ty)) and the longest duration time in two-dimensional RFIM determined by different methods.
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TABLE I. The exponents an®. determined from dynamic
W L (a) scaling relations(4) and finite-size scaling relatio3). Unless
specified, the exponents are determined from critical dynamic scal-
ing for avalanche under quasistatic driving.
De(L) 0
< L  (AH=0.01) D(L) (AH=0.01) 6 z pBlv 1z
£
10° i Do 1 256 1.02 1.05
A./'f *D=0.70 512 0.870 0.870 1.60 1.30 0.13
et - poars 1024 0750 0755 117 156 1.27 0.12 0.72
il e a ] 2048  0.705 0.710 1.20 152 1.27 0.10 0.77
10 1‘5°t (MCS) 1000 to the classical Kolmogorov-Johnson-Mehl-AvratiMA)
equation[23]
(b) f=1—expbt"), (6)
10-1 L
AH=0.01 whereb is a constant that depends on the nucleation rate,
o2l =2 at the beginning of FOPT if all nuclei are distributed
E 103 100 - o Let024
L F ol O L-pos
4 P °  D=075 e F
10 e *  D=0.73 - r
o B ©  D=078 E 3
D=0.70 o P 3 [
S| o e ower law E * L L
10 povert £ I 102 L 10°
‘ ‘ . 5
10° 10' 107 10° ) o
— 101 |
tmes) T p L.
05| o (c) {so00 .
\\ O quasi-static 000 o ®° . . . . !
L o 0. } 102 10°
0.4 o ! AH=0.01 t (mcs)
1 6000
03[ 11
o 1 5000 _,ec
2 1 4000 i De(L) %
1.0 linear fits
o1y 1 3000
00l 1 2000 g o9r
L It L Il L Il 1 I nu
0.65 0.67 0.69 0.71 0.73 0.75 0.77 0.79 0.81
D 0.8
FIG. 1. The log-log plot of the evolution of avalanches at early b
stage for the RFIM al.=1024. (a) Quasistatic driving andb) 07t ( )
AH=0.01.(c) is the square derivatioi from power-law fits(solid ‘ l ‘ K ‘
line) and the avalanche tim,) (dash ling. The minimum¢ leads 0.000 0.001 0.002 0.003 0.004
to D¢(L), which is consistent with that determined by the maxi- L

mum avalanche time.
FIG. 2. (a) Determination of exponentsandvz by short-time
scaling atD(L). The dots represent the results calculated from the
V. DISCUSSION curve Infn)~t at D=0.73, 0.74, and 0.75, and are extrapolated to
. . . . . r=0 with L=1024. The squares represent thosédat0.69 and
To explain the short-time scaling behavior during theg 70 withL = 2048. The inset shows the duration time of avalanche
breakdown process in disordered systems, we first show igt D (L). The plots are in log-log scaldb) Relation between
Fig. 4 the fitting ofm(t), which is equivalent to the transi- D.(L) and L™**. The results of linear fits ar®.(«)=0.65
tion fractionf in a first-order phase transformati¢fOPT), +0.03 andv=1.0+0.1.
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0.099 | 7 .
i 4 = L=256
/ FA— L=512
) T
4 - L=2048

! o L=256, rescaled

d
/ o L=512, rescaled .

s
/7 slope=2.25
-

/ r o L=1024, rescaled

m(t)

-~
7 slope=1.50
-

_____

........ Qor-o—ovwo—ooo-o-oo

-0.001 o ) )
t (MCS) 10 t1 (OIOVI cs) 1000

FIG. 3. Determination of exponentsand B/v by finite size
scaling atD.(e)=0.65. The system is under quasistatic driving. fraction. Solid lines:L =256, 516, 1024, and 204@rom above
The symbols are the rescaled data by factd$ ® mand Z tot, under quasistatic driving @ =D,(e). Dotted line:AH=0.01, L

respectively. The scaling exponents determined by a pair of lattices 2048. The dashed lines are plots of E8). with the slope equal to
are listed in Table I.

n.

FIG. 4. The log-log plot of-In(1—m) vst. mis the transition

randomly. Figure 4 plots [MIn(1-m)] vs In{) in Eq.(6). It as¢~t2 Therefore we have(t)~t? at the early stage and
shows clearly that there atevo stagesn the evolution of ¢ is smaller than 2 in two-dimensional RFIM. Becausk
avalanches: In the short-time reginmeis much smaller than affects the distribution of small flipped spin domains at the
2, while at the late stag®~2.25+0.03, which is consistent beginning of avalanchi26], @ is affected by the driving rate
with the KIMA theory(wheren is between 2 and 3 in 2D of the external field.
Therefore, the late stage breakdown process in RFIM is the The existence of the early stage dynamics process in the
growth or coalescence process of small avalanches randomfsacture or breakdown process in the RFIM appears to sup-
distributed over the system. The short-time evolution of theport the analogy made between fracture and the spinodal
avalanches is unique for the disorder medidote that the nucleation for a first-order phase transitid®]. The unique
KJMA equation is satisfied by the field-driven FOPT in a dynamic scaling behavior in the short-time regime suggests
pure Ising mode[24].) Furthermore, the driving rate of the that fractures or avalanches are nucleation processes con-
external field seems to affect the evolution in short timesrolled largely by a “diffusionlike” mechanism. This regime
while at a latetime it is irrelevant. is distinct from the later stages where the confirmation of the
Our explanation for this two-stage dynamic process is thatlynamic behavior with the KIMA model unambiguously
at the short-time regime, the evolution of the avalanche bepoints to the growth or propagation of the avalanches.
haves like a diffusion process. The local random fields act as For the short-time dynamic scaling, we focused primarily
Brownian forces to the roughening surfaces of the avaen the largest avalanche. Since this avalanche size is usually
lanches. Note that the spreading of the avalanche is anis@efined as an order parameter in the nonequilibrium RFIM
tropic. At the short times the avalanche size grows@$  [18,19,21, the critical exponents determined by our dynamic
~w(t){, wherew(t) is the width of avalanche and(t) scaling can be compared with those obtained by the static
~t%2 for a random growth proced®5]. { is the average critical scaling[18,19. It is remarkable to see that this short-
transverse extent of the flipped spin domain and it may growime power-law scalings(t)~t? is universal for any ava-

TABLE Il. D¢(») and critical exponents determined by different methods. A is from our dynamic
scaling; B1 and B2 are from equilibrium critical scaling; C is from ground state finding.

for®
D() z B 1l (d—Blv)lz
A 0.65+0.03 1.270.03 0.16:0.04 1.0:0.1 1.50+0.02
B1° 0.75+0.03 1.3:t0.2 0.2£0.2 0.63£0.04 1.4£0.2
B22 0.54 or O 0.1%30.13 1.56-0.05
ct 0.64+0.08 —0.038+0.0009 0.560.02
aReferencd19] z in 2D was not measured butl¢ 8/v)/z was conjectured to be equal tootiz and ovz
=0.64+0.02.
bReferencd 18].
‘Referencd17].
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lanche, i.e.,d is the same for avalanches in all sizes. Thiscritical valueD.. These results support the proposition that

issue will be further discussed elsewhg2d]. the disorder-driven system at zero temperature should be-
have like the homogeneous system driven by thermal pertur-
V. SUMMARY bation close to a spinodal point.

] ] ] ~Using the short-time dynamic scaling near the critical

We studied dynamic scaling for the avalanche process iRgint, we are able to determine the critical strength of ran-
RFIM using numerical simulations. We found that the dy-qom fieldD, and related critical exponents, », andz in the

namics has two stages. In the short-time regime, diffusivgyo-dimensional RFIM that have been found very difficult to

growth or nucleation of the avalanche is found; at a latetypiain using static scaling. Our work, although numerical in

stage, the dynamics is consistent with the KIMA growthnayre, suggests an efficient way of obtaining the equilibrium
mechanism. Particular attention is paid to the early stage (gcaling exponents for disordered systems.

the breakdown process. In the short-time regime, the ava-
lanche size is found to obey the dynamic power-law scaling

s(t)~t(d=A#)z This power-law evolution turns into the dy- ACKNOWLEDGMENT
namic behavior described by the KIMA equation in later
times. In the thermodynamic limit, the crossover timeom We greatly acknowledge the support to this work pro-

the power-law regime to the KIMA regime is expected tovided by the Department of Energy under Contract No. DE-
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